
Thinking can only be best developed if new problems are constantly being solved. Computation thinking as aimed at

developing the following competencies:

• Familiarity in dealing with complexity;

• Resistance in dealing with difficult problems;

• Tolerance for ambiguity;

• Ability to deal with open questions;

• Ability to communicate and to solve problems together.

These are educational values that are becoming more and more important.

To develop CT, students can be faced with the problems that can be open, ambiguous, complex and so difficult that they

can only be solved in a team and through good communication. It must also be emphasized that CT can be learned and

taught at all ages from early childhood to the school-leaving examinations and of course beyond; in a variety of

disciplines: from science and math to writing and literature.

An example is around building a hand-made pedometer. The teacher assigns to think of a problem a student wants to

solve. Importantly, students decide based on their own interests. The student chooses something that puzzles him and

brings the story to the teacher: The student’s sister claims she walks 10,000 steps every day. She works as a

kindergarten teacher and walks to and from work every day. She thinks it keeps her fit. The student wants to understand

what it means to walk 10,000 steps. Counting all her steps in one day is not possible. Besides, she probably does not

walk all the time, but sits at her work sometimes. This is discussed with the teacher and other students. Together, they

decide to build a pedometer that would count the steps the student’s sister walks. The task is formulated as to build a

pedometer that attaches to your wrist or ankle and counts steps as you walk. With each step, a pulse is counted and then

shown on the display. Also, it needs to include the possibility to restart the pedometer (reset).

The Computational Thinking (CT) aims to use analytic and algorithmic approaches to formulate, analyse and solve

problems. The CT practices include design and development of computational artefacts, models, simulations; artefacts of

natural and artificial phenomena collaboratively and the implementation of computing techniques to solve problems, such

as coding, programming and robotics.

• Project-oriented teaching and teamwork are adequate methods to

deal with more extensive problems of computational thinking.

• The Computer Science (CS) Unplugged involves problem solving

to achieve a goal, dealing with fundamental concepts from CS.

• Computer simulations to explore phenomena.

• Computer models that can be tested, debugged and refined.

• A computer game or app construction project.

ASSESSMENT: ‘a system of assessments’

E.g. Computational Thinking Pattern Analysis framework enables to

visualize which of nine specific skills students have mastered in game

design. Dr. Scratch targets seven dimensions of CT competency.

Analysing the artefacts, troubleshooting scenarios

LEARNING OBJECTIVES/ ASPIRATIONS

NARRATIVE OVERVIEW

APPROACH TO TEACHING
AND LEARNING

Educational level: Early childhood, primary, secondary | Age: >6

Author: Michael Steiner and Hermann Morgenbesser, Future Learning Lab Vienna

Finding solutions with computational
thinking

LEARNING
SCENARIO

TEACHERS: Teachers must learn how to

manage a classroom in which the computer

serves as both the primary medium for

demonstrating performance as well as an

occasional teaching aid. The activities can

be arranged in the different learning zones

of the classroom. Also, to support

collaboration in groups, scaffolding is

necessary.

LEARNERS: Students work collaboratively

(as a team in planning and developing

solutions), and take on roles (programmer,

analyst, builder etc.) as the group seeks to

regulate its work.

OTHERS: External experts can be invited

via Conference tools to support activities.

ROLES

When integrated into compulsory education, there is

an open question of what kind of assessment could

elicit students’ problem solving and CT skills in

authentic contexts.

There is also the need to develop certain behaviour

among students – for working with others and dealing

with frustration.

Age-appropriate activities need to be chosen, but

also there is a need to respond to students’ interests

and not to demotivate girls activities need to be

proposed to their taste as well.

Importantly, CT learning activities require teaching

capacity in designing and assessing CT classroom

experiences that focus on CT concepts.

Interaction between the teacher and the students is

important throughout the educational experience while

the teacher gives instructions, feedback and guides

through the process. The students work in teams, and

actively exchange the views on the project tasks, roles

division. The students develop their draft solution with

the support of the teacher. Teams create solutions.

They can share different tasks to create a product. For

example, one team programs, the other works with the

micro:bit, and other materials.

Next, the students share their progress with the

teacher, and the teacher further coaches on the next

steps and gives possible hints, also discusses

possible difficulties or mistakes – again interaction

happens. Finally, the students present their work or

progress and reflect on how their work has developed,

also on the team work.

CT learning activities are built around the key CT concepts

such as abstraction, algorithmic thinking, automation,

decomposition, debugging, and generalization. Coding and

programming is a constituent of CT as it makes CT concepts

concrete and can become a tool for learning. However, even

more important is what precedes coding and programming –

the process of problem analysis and problem decomposition.

Key activities for the Pedometer Story would be:

• The teacher gives instructions around designing pseudo

code/UML prototypes, or developing a solution.

• Development of draft solutions in teams.

• General presentation of the running programs or working

pieces.

• Reflection on the process and making the necessary

changes.

• There is also space for improvement. The last stage could

be around re-making or improving the solution.

• Programming language, e,g, Python, Scratch,

SNAP

• micro:bit

• old fabrics needle and thread

• velcro tape

LEARNING ENVIRONMENT LEARNING ACTIVITIES

RESOURCES

POSSIBLE CHALLENGES

Finding solutions with computational thinking

The learning scenario is created by the DesignFILS project (http://designfils.eba.gov.tr), funded by
EU’s Erasmus+ KA2 (grant agreement 2019-1-TR01-KA201-076567). The contents of the publication
are the sole responsibility of the authors, and the EC or Turkish National Agency cannot be held
responsible for any use which may be made of the information contained therein. The publication is
made available under the terms of Creative Commons License Attribution–Non-Commercial (CC-BY-
NC).

• Wing, J. (2006): Computational thinking.

Communications of the ACM, 49(3), 33-35.

• Computational Thinking Task Force:

https://csta.acm.org/Curriculum/sub/CompThinking.html

• Computer Science Unplugged:

https://csunplugged.org/en/

• K-12 Framework: https://k12cs.org/wp-

content/uploads/2016/09/Computer-Science-

Framework.pdf

• Coding with microbits: https://padlet.com/eis/dlplwien

LITERATURE TO SUPPORT

https://www.youtube.com/watch?v=Z7xg1yZGeW0

LEARNING SCENARIO VIDEO

http://designfils.eba.gov.tr/
https://csta.acm.org/Curriculum/sub/CompThinking.html
https://csunplugged.org/en/
https://k12cs.org/wp-content/uploads/2016/09/Computer-Science-Framework.pdf
https://padlet.com/eis/dlplwien
https://www.youtube.com/watch?v=Z7xg1yZGeW0

